Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.459
Filter
1.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38712627

ABSTRACT

Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.


Subject(s)
Tight Junctions , Tight Junctions/metabolism , Tight Junctions/ultrastructure , Humans , Animals , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Epithelial Cells/cytology
2.
Sci Rep ; 13(1): 10426, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369758

ABSTRACT

Previously, we showed that after Freund's adjuvant-induced peritonitis, rat mesothelial cells regain their epithelial phenotype through mesenchymal-epithelial transition (MET) accompanied by autophagy. Since bone morphogenetic proteins (BMPs) are well-known MET-inducers, we were interested in the potential expression of BMPs and BMP-induced pathways. Although mesothelial cells expressed lower amounts of BMP7, its level in the peritoneal cavity and mesothelial synthesis of BMP4 were significantly increased during inflammation. BMPR1A and BMPR2 were also significantly expressed. Expression of transforming growth factor beta-activated kinase (TAK1) and c-Jun NH2-terminal kinases (JNK1-JNK2) were more intense than that of phosphorylated Mothers Against Decapentaplegic homolog 1/5 (p-SMAD1/5), confirming that the non-canonical pathway of BMPs prevailed in our model. JNK signaling through B-cell lymphoma-2 (Bcl-2) can contribute to Beclin-1 activation. We demonstrated that TAK1-JNK-Bcl-2 signaling was upregulated simultaneously with the autophagy-mediated regeneration. A further goal of our study was to prove the regenerative role of autophagy after inflammation. We used a specific inhibitor, bafilomycin A1 (BafA1), and found that BafA1 treatment decreased the expression of microtubule-associated protein 1A/1B-light chain 3 (LC3B) and resulted in morphological signs of cell death in inflamed mesothelial cells indicating that if autophagy is arrested, regeneration turns into cell death and consequently, mesothelial cells die.


Subject(s)
Bone Morphogenetic Proteins , Cell Differentiation , Epithelial Cells , Signal Transduction , Animals , Rats , Autophagy/drug effects , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/pharmacology , Cell Differentiation/genetics , Inflammation/chemically induced , Freund's Adjuvant/pharmacology , Gene Expression Regulation/drug effects , Up-Regulation , Bone Morphogenetic Protein Receptors/genetics , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Apoptosis/drug effects , Regeneration/physiology , Enzyme Inhibitors/pharmacology
3.
Nat Commun ; 13(1): 693, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121734

ABSTRACT

Intracellular pathogens are challenged with limited space and resources while replicating in a single host cell. Mechanisms for direct invasion of neighboring host cells have been discovered in cell culture, but we lack an understanding of how bacteria directly spread between host cells in vivo. Here, we describe the discovery of intracellular bacteria that use filamentation for spreading between the intestinal epithelial cells of a natural host, the rhabditid nematode Oscheius tipulae. The bacteria, which belong to the new species Bordetella atropi, can infect the nematodes following a fecal-oral route, and reduce host life span and fecundity. Filamentation requires UDP-glucose biosynthesis and sensing, a highly conserved pathway that is used by other bacteria to detect rich conditions and inhibit cell division. Our results indicate that B. atropi uses a pathway that normally regulates bacterial cell size to trigger filamentation inside host cells, thus facilitating cell-to-cell dissemination.


Subject(s)
Bordetella/growth & development , Intestinal Mucosa/cytology , Rhabditoidea/cytology , Animals , Bordetella/classification , Bordetella/pathogenicity , Cell Division/genetics , Epithelial Cells/microbiology , Epithelial Cells/ultrastructure , Genome, Bacterial/genetics , Host-Pathogen Interactions , In Situ Hybridization, Fluorescence , Intestinal Mucosa/microbiology , Intracellular Space/microbiology , Metabolic Networks and Pathways/genetics , Microscopy, Electron, Transmission , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhabditoidea/genetics , Rhabditoidea/microbiology , Sequence Analysis, DNA , Virulence
4.
J Cell Biol ; 221(3)2022 02 09.
Article in English | MEDLINE | ID: mdl-35139142

ABSTRACT

The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and structural integrity. Here, we show that plectin, a major intermediate filament-based cytolinker protein, orchestrates cortical cytoskeletal networks in epithelial sheets to support intercellular junctions. By combining CRISPR/Cas9-based gene editing and pharmacological inhibition, we demonstrate that in an F-actin-dependent context, plectin is essential for the formation of the circumferential keratin rim, organization of radial keratin spokes, and desmosomal patterning. In the absence of plectin-mediated cytoskeletal cross-linking, the aberrant keratin-desmosome (DSM)-network feeds back to the actin cytoskeleton, which results in elevated actomyosin contractility. Also, by complementing a predictive mechanical model with Förster resonance energy transfer-based tension sensors, we provide evidence that in the absence of cytoskeletal cross-linking, major intercellular junctions (adherens junctions and DSMs) are under intrinsically generated tensile stress. Defective cytoarchitecture and tensional disequilibrium result in reduced intercellular cohesion, associated with general destabilization of plectin-deficient sheets upon mechanical stress.


Subject(s)
Cytoskeleton/metabolism , Epithelial Cells/metabolism , Plectin/metabolism , Actins/metabolism , Animals , Biomechanical Phenomena , Cytoskeleton/ultrastructure , Desmosomes/metabolism , Desmosomes/ultrastructure , Dogs , Epithelial Cells/ultrastructure , Gene Knockout Techniques , Humans , Keratins/metabolism , MCF-7 Cells , Madin Darby Canine Kidney Cells , Mice , Protein Isoforms/metabolism , Tensile Strength
5.
Microsc Res Tech ; 85(5): 1845-1855, 2022 May.
Article in English | MEDLINE | ID: mdl-34978358

ABSTRACT

The present study was done on 20 adult specimens of Nile catfish (Clarias gariepinus) to demonstrate the morphological characteristics of the cardiac region of the stomach. The cardiac mucosa was characterized by a large number of well-defined long folds. The surface epithelial cells were simple columnar type covered with distinct microvilli and connected by desmosomes. Few PAS- and AB- positive goblet cells were found between the surface epithelium. In addition, many lymphocytes, macrophages, and blood capillaries were seen in the epithelial layer. The lamina propria was exclusively occupied by simple branched gastric (cardiac) glands that fill most of the thickness of the mucosa and open into gastric pits. The gastric glands were composed of numerous secretory tubules that were lined with one type of cells with a cytoplasm containing numerous electron-dense granules, well-developed rER, mitochondria, and a large number of free ribosomes. Moreover, macrophages were distributed in the lamina propria and submucosa. Telocytes were observed in the cardiac region for the first time around the glands, blood vessels, between the muscular layer, and in the serosa. A large number of mast cells could be identified in the submucosa around the blood vessels. The presence of many immune cells in the wall of the cardiac stomach suggests involvement in immune response in addition to its digestive function. RESEARCH HIGHLIGHTS: The study exposed many cell types in the wall of the cardiac stomach of Nile catfish including mast cells, lymphocytes, and neutrophils that suggests an involvement in the immune response. The current study is the first one to highlight the distribution of telocytes in the fish stomach.


Subject(s)
Catfishes , Animals , Catfishes/anatomy & histology , Epithelial Cells/ultrastructure , Epithelium , Mucous Membrane , Stomach
6.
Histopathology ; 80(3): 515-528, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34605058

ABSTRACT

AIMS: Although evaluation of nuclear morphology is important for the diagnosis and categorisation of breast lesions, the criteria used to assess nuclear atypia rely upon the subjective evaluation of several features that may result in inter- and intraobserver variation. This study aims to refine the definitions of cytonuclear features in various breast lesions. METHODS AND RESULTS: ImageJ was used to assess the nuclear morphological features including nuclear diameter, axis length, perimeter, area, circularity and roundness in 160 breast lesions comprising ductal carcinoma in situ (DCIS), invasive breast carcinoma of no special type (IBC-NST), tubular carcinoma, usual ductal hyperplasia (UDH), columnar cell change (CCC) and flat epithelial atypia (FEA). Reference cells included normal epithelial cells, red blood cells (RBCs) and lymphocytes. Reference cells showed size differences not only between normal epithelial cells and RBCs but also between RBCs in varied-sized blood vessels. Nottingham grade nuclear pleomorphism scores 1 and 3 cut-offs in IBC-NST, compared to normal epithelial cells, were < ×1.2 and > ×1.4 that of mean maximum Feret's diameter and < ×1.6 and > ×2.4 that of mean nuclear area, respectively. Nuclear morphometrics were significantly different in low-grade IBC-NST versus tubular carcinoma, low-grade DCIS versus UDH and CCC versus FEA. No differences in the nuclear features between grade-matched DCIS and IBC-NST were identified. CONCLUSION: This study provides a guide for the assessment of nuclear atypia in breast lesions, refines the comparison with reference cells and highlights the potential diagnostic value of image analysis tools in the era of digital pathology.


Subject(s)
Adenocarcinoma , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Cell Nucleus/pathology , Observer Variation , Adenocarcinoma/pathology , Adenocarcinoma/ultrastructure , Biopsy , Breast Neoplasms/pathology , Breast Neoplasms/ultrastructure , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/ultrastructure , Carcinoma, Intraductal, Noninfiltrating/pathology , Carcinoma, Intraductal, Noninfiltrating/ultrastructure , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Female , Humans , Hyperplasia/pathology
7.
Development ; 148(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34927678

ABSTRACT

Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.


Subject(s)
Embryonic Development/genetics , Lung/growth & development , Mesenchymal Stem Cells/cytology , Organogenesis/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Embryo, Mammalian/ultrastructure , Epithelial Cells/cytology , Epithelial Cells/ultrastructure , Gene Expression Regulation, Developmental/genetics , Lung/ultrastructure , Mesenchymal Stem Cells/ultrastructure , Mice , RNA-Seq , Single-Cell Analysis , Transcriptome/genetics
8.
Sci Rep ; 11(1): 23663, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880327

ABSTRACT

Babesiosis is one of the most common infections in free-living animals and is rapidly becoming significant among human zoonoses. Cases of acute renal failure in humans caused by Babesia spp. have been described in the literature. The kidneys are characterised by intense blood flow through the blood vessels, which increases the likelihood of contact with the intra-erythrocyte parasite. The aim of this study was to observe the influence of B. microti (ATCC 30221) on renal epithelial cells in vitro cultured (NRK-52E line) and Wistar rats' kidney. Both NRK-52E cells and rats' kidney sections were analysed by light microscopy, transmission electron microscopy (TEM) and fluorescence in situ hybridization (FISH). Necrotic changes in renal epithelial cells have been observed in vitro and in vivo. In many cross-sections through the rats' kidney, adhesion of blood cells to the vascular endothelium, accumulation of erythrocytes and emboli were demonstrated. In NRK-52E culture, elements with a distinctly doubled cell membrane resembling B. microti were found inside the cytoplasm and adjacent to the cell layer. The study indicates a chemotactic tendency for B. microti to adhere to the renal tubules' epithelium, a possibility of piroplasms entering the renal epithelial cells, their proliferation within the cytoplasm and emboli formation.


Subject(s)
Babesia microti/physiology , Epithelial Cells/metabolism , Host-Parasite Interactions , Kidney Tubules/cytology , Merozoites/physiology , Animals , Babesiosis/parasitology , Cells, Cultured , Coculture Techniques , Epithelial Cells/ultrastructure , Erythrocytes/parasitology , Erythrocytes/ultrastructure , Rats
9.
PLoS Pathog ; 17(12): e1009592, 2021 12.
Article in English | MEDLINE | ID: mdl-34852011

ABSTRACT

Neisseria gonorrhoeae (GC) establishes infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli denudation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shedding from the cervix by immunofluorescence microscopy, but not significantly in the ectocervical and the endocervical regions. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Collectively, our results suggest that while GC invade non-polarized epithelial cells through ezrin-driven microvilli elongation, the apical polarization of ezrin and F-actin inhibits GC entry into polarized epithelial cells.


Subject(s)
Cell Polarity , Cytoskeletal Proteins/metabolism , Gonorrhea/microbiology , Neisseria gonorrhoeae/genetics , Actins/metabolism , Cervix Uteri/microbiology , Epithelial Cells/microbiology , Epithelial Cells/ultrastructure , Epithelium/microbiology , Female , Humans , Microvilli/ultrastructure , Mucous Membrane/microbiology , Neisseria gonorrhoeae/physiology , Phosphorylation
10.
Exp Eye Res ; 213: 108808, 2021 12.
Article in English | MEDLINE | ID: mdl-34762932

ABSTRACT

Human lens regeneration and the Bag-in-the-Lens (BIL) surgical treatment for cataract both depend upon lens capsule closure for their success. Our studies suggest that the first three days after surgery are critical to their long-term outcomes. Using a rat model of lens regeneration, we evidenced lens epithelial cell (LEC) proliferation increased some 50 fold in the first day before rapidly declining to rates observed in the germinative zone of the contra-lateral, un-operated lens. Cell multi-layering at the lens equator occurred on days 1 and 2, but then reorganised into two discrete layers by day 3. E- and N-cadherin expression preceded cell polarity being re-established during the first week. Aquaporin 0 (AQP0) was first detected in the elongated cells at the lens equator at day 7. Cells at the capsulotomy site, however, behaved very differently expressing the epithelial mesenchymal transition (EMT) markers fibronectin and alpha-smooth muscle actin (SMA) from day 3 onwards. The physical interaction between the apical surfaces of the anterior and posterior LECs from day 3 after surgery preceded cell elongation. In the human BIL sample fibre cell formation was confirmed by both histological and proteome analyses, but the cellular response is less ordered and variable culminating in Soemmerring's ring (SR) formation and sometimes Elschnig's pearls. This we evidence for lenses from a single patient. No bow region or recognisable epithelial-fibre cell interface (EFI) was evident and consequently the fibre cells were disorganised. We conclude that lens cells require spatial and cellular cues to initiate, sustain and produce an optically functional tissue in addition to capsule integrity and the EFI.


Subject(s)
Capsule Opacification/metabolism , Epithelial Cells/physiology , Lens Implantation, Intraocular , Lens, Crystalline/physiology , Regeneration/physiology , Actins/metabolism , Aged , Animals , Aquaporins/metabolism , Cadherins/metabolism , Cell Proliferation/physiology , Epithelial Cells/ultrastructure , Epithelial-Mesenchymal Transition/physiology , Eye Proteins/metabolism , Female , Fibronectins/metabolism , Humans , In Situ Nick-End Labeling , Lens Capsule, Crystalline/cytology , Lens Capsule, Crystalline/surgery , Lens, Crystalline/ultrastructure , Male , Microscopy, Electron , Microscopy, Fluorescence , Models, Animal , Nerve Tissue Proteins/metabolism , Proteomics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
11.
Sci Rep ; 11(1): 21846, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750422

ABSTRACT

Welding fumes induce lung toxicity and are carcinogenic to humans but the molecular mechanisms have yet to be clarified. The aim of this study was to evaluate the toxicity of stainless and mild steel particles generated via gas-metal arc welding using primary human small airway epithelial cells (hSAEC) and ToxTracker reporter murine stem cells, which track activation of six cancer-related pathways. Metal content (Fe, Mn, Ni, Cr) of the particles was relatively homogenous across particle size. The particles were not cytotoxic in reporter stem cells but stainless steel particles activated the Nrf2-dependent oxidative stress pathway. In hSAEC, both particle types induced time- and dose-dependent cytotoxicity, and stainless steel particles also increased generation of reactive oxygen species. The cellular metal content was higher for hSAEC compared to the reporter stem cells exposed to the same nominal dose. This was, in part, related to differences in particle agglomeration/sedimentation in the different cell media. Overall, our study showed differences in cytotoxicity and activation of cancer-related pathways between stainless and mild steel welding particles. Moreover, our data emphasizes the need for careful assessment of the cellular dose when comparing studies using different in vitro models.


Subject(s)
Air Pollutants, Occupational/toxicity , Stainless Steel/toxicity , Steel/toxicity , Welding , Air Pollutants, Occupational/chemistry , Animals , Cell Line , Cell Survival/drug effects , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Humans , Inhalation Exposure/adverse effects , Lung/drug effects , Lung/metabolism , Mice , Microscopy, Electron, Transmission , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/ultrastructure , Particle Size , Reactive Oxygen Species/metabolism , Stainless Steel/chemistry , Steel/chemistry , Welding/methods
12.
Nat Immunol ; 22(11): 1440-1451, 2021 11.
Article in English | MEDLINE | ID: mdl-34686860

ABSTRACT

Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.


Subject(s)
Colitis/enzymology , Colon/enzymology , Cytotoxicity, Immunologic , Electron Transport Complex II/metabolism , Epithelial Cells/enzymology , Graft vs Host Disease/enzymology , Intestinal Mucosa/enzymology , Mitochondria/enzymology , T-Lymphocytes/immunology , Animals , Case-Control Studies , Cell Communication , Cells, Cultured , Colitis/genetics , Colitis/immunology , Colitis/pathology , Colon/immunology , Colon/ultrastructure , Disease Models, Animal , Electron Transport Complex II/genetics , Epithelial Cells/immunology , Epithelial Cells/ultrastructure , Female , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Humans , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/ultrastructure , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/immunology , Mitochondria/ultrastructure , Oxidative Phosphorylation , Succinic Acid/metabolism , T-Lymphocytes/metabolism
13.
Bull Exp Biol Med ; 171(5): 676-680, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34618265

ABSTRACT

Kidney diseases are becoming an emerging public health problem. In order to further explore the etiology of various kidney diseases, we improved the methods of isolation of primary cultures of mouse renal tubular epithelial cells. At the first stage, the kidneys were perfused with collagenase solution. To this end, the superior mesenteric artery, celiac artery and thoracic aorta were ligated and perfusion was performed through the abdominal aorta. Then, the cells were isolated ex vivo and their integrity, purity, viability, and concentration were evaluated. The proposed cost-effective and simple method provides high purity and high concentration of primary renal epithelial cells for molecular biology studies of the kidneys.


Subject(s)
Epithelial Cells/cytology , Kidney Tubules/cytology , Primary Cell Culture/methods , Animals , Cell Count , Cell Separation/methods , Cell Survival , Cells, Cultured , Epithelial Cells/physiology , Epithelial Cells/ultrastructure , Kidney Tubules/physiology , Kidney Tubules/ultrastructure , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission
14.
Neurosci Lett ; 764: 136246, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34530114

ABSTRACT

Choroid plexus (CP) is the principal source of cerebrospinal fluid. CP can produce and release a wide range of materials including growth factors, neurotrophic factors, etc. all of which play an important role in the maintenance and proper functioning of the brain. Methamphetamine (METH) is a CNS neurostimulant that causes brain dysfunction. Herein, we investigated the potential effects of METH exposure on CP structure and function. Stereological analysis revealed a significant alteration in CP volume, epithelial cells and capillary number upon METH treatment. Electron microscopy exhibited changes in ultrastructure. Moreover, the upregulation of neurotrophic factors such as BDNF and VEGF as well as autophagy and apoptosis gene following METH administration were observed. We also identified several signaling cascades related to autophagy. In conclusion, gene expression changes coupled with structural alterations of the CP in response to METH suggested METH-induced autophagy in CP.


Subject(s)
Central Nervous System Stimulants/toxicity , Choroid Plexus/drug effects , Methamphetamine/toxicity , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Brain-Derived Neurotrophic Factor/analysis , Brain-Derived Neurotrophic Factor/metabolism , Caspase 3/analysis , Caspase 3/metabolism , Central Nervous System Stimulants/administration & dosage , Choroid Plexus/cytology , Choroid Plexus/pathology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Injections, Intraperitoneal , Male , Methamphetamine/administration & dosage , Microscopy, Electron, Transmission , Rats , Up-Regulation/drug effects , Vascular Endothelial Growth Factor A/analysis , Vascular Endothelial Growth Factor A/metabolism
15.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576085

ABSTRACT

Bitter-taste receptors (T2Rs) have emerged as key players in host-pathogen interactions and important modulators of oral innate immunity. Previously, we reported that T2R14 is expressed in gingival epithelial cells (GECs) and interacts with competence stimulating peptides (CSPs) secreted by the cariogenic Streptococcus mutans. The underlying mechanisms of the innate immune responses and physiological effects of T2R14 on Gram-positive bacteria are not well characterized. In this study, we examined the role of T2R14 in internalization and growth inhibitory effects on Gram-positive bacteria, namely Staphylococcus aureus and S. mutans. We utilized CRISPR-Cas9 T2R14 knockdown (KD) GECs as the study model to address these key physiological mechanisms. Our data reveal that the internalization of S. aureus is significantly decreased, while the internalization of S. mutans remains unaffected upon knockdown of T2R14 in GECs. Surprisingly, GECs primed with S. mutans CSP-1 resulted in an inhibition of growth for S. aureus, but not for S. mutans. The GECs infected with S. aureus induced T2R14-dependent human ß-defensin-2 (hBD-2) secretion; however, S. mutans-infected GECs did not induce hBD-2 secretion, but induced T2R14 dependent IL-8 secretion. Interestingly, our results show that T2R14 KD affects the cytoskeletal reorganization in GECs, thereby inhibiting S. aureus internalization. Our study highlights the distinct mechanisms and a direct role of T2R14 in influencing physiological responses to Gram-positive bacteria in the oral cavity.


Subject(s)
Endocytosis , Epithelial Cells/metabolism , Gingiva/cytology , Gram-Positive Bacteria/metabolism , Microbial Viability , Receptors, G-Protein-Coupled/metabolism , Taste , Actins/metabolism , Cell Line , Epithelial Cells/ultrastructure , Humans , Interleukin-8/metabolism , Models, Biological , Nitrates/metabolism , Nitrites/metabolism , Staphylococcus aureus/metabolism , Streptococcus mutans/metabolism , beta-Defensins/metabolism , p21-Activated Kinases/metabolism , rac1 GTP-Binding Protein/metabolism
16.
Sci Rep ; 11(1): 17258, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446784

ABSTRACT

Urothelial dysfunction may be a key pathomechanism underlying interstitial cystitis/bladder pain syndrome (IC/BPS). We therefore examined if clinical severity is associated with the extent of urothelial damage as revealed by electron microscopic (EM) analysis of biopsy tissue. One hundred IC/BPS patients were enrolled and 24 patients with stress urinary incontinence served as controls. Clinical symptoms were evaluated by visual analog scale pain score and O'Leary-Sant Symptom score. Bladder biopsies were obtained following cystoscopic hydrodistention. The presence of Hunner's lesions and glomerulation grade after hydrodistention were recorded and patients classified as Hunner-type IC (HIC) or non-Hunner-type IC (NHIC). HIC patients exhibited more severe defects in urothelium cell layers, including greater loss of umbrella cells, umbrella cell surface uroplakin plaque, and tight junctions between adjacent umbrella cells, compared to control and NHIC groups (all p < 0.05). Both NHIC and HIC groups demonstrated more severe lamina propria inflammatory cell infiltration than controls (p = 0.011, p < 0.001, respectively). O'Leary-Sant Symptom scores were significantly higher among patients with more severe urothelial defects (p = 0.030). Thus, urothelium cell layer defects on EM are associated with greater clinical symptom severity.


Subject(s)
Cystitis, Interstitial/diagnosis , Cystoscopy/methods , Epithelial Cells/ultrastructure , Microscopy, Electron, Transmission/methods , Urinary Bladder/ultrastructure , Urothelium/ultrastructure , Adult , Aged , Aged, 80 and over , Chi-Square Distribution , Female , Humans , Male , Middle Aged , Pain Measurement/methods , Urinary Bladder/pathology , Urinary Bladder/physiopathology , Young Adult
17.
Sci Rep ; 11(1): 16539, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400683

ABSTRACT

In many phenomena of biological systems, not a majority, but a minority of cells act on the entire multicellular system causing drastic changes in the system properties. To understand the mechanisms underlying such phenomena, it is essential to observe the spatiotemporal dynamics of a huge population of cells at sub-cellular resolution, which is difficult with conventional tools such as microscopy and flow cytometry. Here, we describe an imaging system named AMATERAS that enables optical imaging with an over-one-centimeter field-of-view and a-few-micrometer spatial resolution. This trans-scale-scope has a simple configuration, composed of a low-power lens for machine vision and a hundred-megapixel image sensor. We demonstrated its high cell-throughput, capable of simultaneously observing more than one million cells. We applied it to dynamic imaging of calcium ions in HeLa cells and cyclic-adenosine-monophosphate in Dictyostelium discoideum, and successfully detected less than 0.01% of rare cells and observed multicellular events induced by these cells.


Subject(s)
Cells/cytology , Microscopy, Fluorescence/methods , Animals , Brain/cytology , Calcium/analysis , Cyclic AMP/analysis , Dictyostelium/chemistry , Dictyostelium/ultrastructure , Dogs , Entosis , Epithelial Cells/ultrastructure , Equipment Design , Green Fluorescent Proteins , HeLa Cells/chemistry , HeLa Cells/ultrastructure , Humans , Interneurons/ultrastructure , Luminescent Proteins , Madin Darby Canine Kidney Cells , Mice , Microscopy, Fluorescence/instrumentation , Neurons/ultrastructure , Semiconductors , Red Fluorescent Protein
18.
Virol J ; 18(1): 149, 2021 07 18.
Article in English | MEDLINE | ID: mdl-34275492

ABSTRACT

BACKGROUND: The novel coronavirus SARS-CoV-2 is the etiological agent of COVID-19. This virus has become one of the most dangerous in recent times with a very high rate of transmission. At present, several publications show the typical crown-shape of the novel coronavirus grown in cell cultures. However, an integral ultramicroscopy study done directly from clinical specimens has not been published. METHODS: Nasopharyngeal swabs were collected from 12 Cuban individuals, six asymptomatic and RT-PCR negative (negative control) and six others from a COVID-19 symptomatic and RT-PCR positive for SARS CoV-2. Samples were treated with an aldehyde solution and processed by scanning electron microscopy (SEM), confocal microscopy (CM) and, atomic force microscopy. Improvement and segmentation of coronavirus images were performed by a novel mathematical image enhancement algorithm. RESULTS: The images of the negative control sample showed the characteristic healthy microvilli morphology at the apical region of the nasal epithelial cells. As expected, they do not display virus-like structures. The images of the positive sample showed characteristic coronavirus-like particles and evident destruction of microvilli. In some regions, virions budding through the cell membrane were observed. Microvilli destruction could explain the anosmia reported by some patients. Virus-particles emerging from the cell-surface with a variable size ranging from 80 to 400 nm were observed by SEM. Viral antigen was identified in the apical cells zone by CM. CONCLUSIONS: The integral microscopy study showed that SARS-CoV-2 has a similar image to SARS-CoV. The application of several high-resolution microscopy techniques to nasopharyngeal samples awaits future use.


Subject(s)
COVID-19/pathology , Nasopharynx/ultrastructure , SARS-CoV-2/ultrastructure , Antigens, Viral/metabolism , COVID-19/diagnosis , COVID-19/virology , Epithelial Cells/ultrastructure , Epithelial Cells/virology , Humans , Image Enhancement , Microscopy , Microvilli/ultrastructure , Nasal Mucosa/ultrastructure , Nasal Mucosa/virology , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Virion/ultrastructure
19.
Commun Biol ; 4(1): 850, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34239035

ABSTRACT

The retinal pigmented epithelium (RPE) is a monolayer of multifunctional cells located at the back of the eye. High membrane turnover and polarization, including formation of actin-based apical microvilli, are essential for RPE function and retinal health. Herein, we demonstrate an important role for ßA3/A1-crystallin in RPE. ßA3/A1-crystallin deficiency leads to clathrin-mediated epidermal growth factor receptor (EGFR) endocytosis abnormalities and actin network disruption at the apical side that result in RPE polarity disruption and degeneration. We found that ßA3/A1-crystallin binds to phosphatidylinositol transfer protein (PITPß) and that ßA3/A1-crystallin deficiency diminishes phosphatidylinositol 4,5-biphosphate (PI(4,5)P2), thus probably decreasing ezrin phosphorylation, EGFR activation, internalization, and degradation. We propose that ßA3/A1-crystallin acquired its RPE function before evolving as a structural element in the lens, and that in the RPE, it modulates the PI(4,5)P2 pool through PITPß/PLC signaling axis, coordinates EGFR activation, regulates ezrin phosphorylation and ultimately the cell polarity.


Subject(s)
Cell Polarity/physiology , Endocytosis , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Retinal Pigment Epithelium/metabolism , beta-Crystallin A Chain/metabolism , Animals , Cell Polarity/genetics , Cytoskeletal Proteins/metabolism , Epithelial Cells/ultrastructure , Humans , Mice, Knockout , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phospholipid Transfer Proteins/metabolism , Phosphorylation , Protein Binding , Retinal Pigment Epithelium/cytology , beta-Crystallin A Chain/genetics
20.
NPJ Biofilms Microbiomes ; 7(1): 57, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230496

ABSTRACT

Bacterial vaginosis (BV) is a gynecologic disorder characterized by a shift in cervicovaginal microbiota from Lactobacillus spp. dominance to a polymicrobial biofilm composed of diverse anaerobes. We utilized a well-characterized human three-dimensional cervical epithelial cell model in conjunction with untargeted metabolomics and immunoproteomics analyses to determine the immunometabolic contribution of three members of the Veillonellaceae family: Veillonella atypica, Veillonella montpellierensis and Megasphaera micronuciformis at this site. We found that Veillonella spp. infections induced significant elevation of polyamines. M. micronuciformis infections significantly increased soluble inflammatory mediators, induced moderate levels of cell cytotoxicity, and accumulation of cell membrane lipids relative to Veillonella spp. Notably, both V. atypica and V. montpellierensis infections resulted in consumption of lactate, a key metabolite linked to gynecologic and reproductive health. Collectively our approach and data provide unique insights into the specific contributions of Veillonellaceae members to the pathogenesis of BV and women's health.


Subject(s)
Energy Metabolism , Mucous Membrane/metabolism , Mucous Membrane/microbiology , Vagina/metabolism , Vagina/microbiology , Veillonellaceae/physiology , Amino Acids/metabolism , Cell Culture Techniques , Computational Biology/methods , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Female , Host-Pathogen Interactions/immunology , Humans , Lipid Metabolism , Metabolome , Metabolomics/methods , Vaginosis, Bacterial/metabolism , Vaginosis, Bacterial/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...